(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0))
f(x, 0, z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
-(s(x), s(y)) →+ -(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
*'(x, 0') → 0'
*'(x, s(y)) → +'(*'(x, y), x)
if(true, x, y) → x
if(false, x, y) → y
odd(0') → false
odd(s(0')) → true
odd(s(s(x))) → odd(x)
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0'))
f(x, 0', z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *'(x, z)), f(*'(x, x), half(s(y)), z))
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
*'/0
+'/1
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
*'(0') → 0'
*'(s(y)) → +'(*'(y))
if(true, x, y) → x
if(false, x, y) → y
odd(0') → false
odd(s(0')) → true
odd(s(s(x))) → odd(x)
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0'))
f(x, 0', z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *'(z)), f(*'(x), half(s(y)), z))
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
*'(0') → 0'
*'(s(y)) → +'(*'(y))
if(true, x, y) → x
if(false, x, y) → y
odd(0') → false
odd(s(0')) → true
odd(s(s(x))) → odd(x)
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
if(true, x, y) → true
if(false, x, y) → false
pow(x, y) → f(x, y, s(0'))
f(x, 0', z) → z
f(x, s(y), z) → if(odd(s(y)), f(x, y, *'(z)), f(*'(x), half(s(y)), z))
Types:
- :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
0' :: 0':s:+':true:false
s :: 0':s:+':true:false → 0':s:+':true:false
*' :: 0':s:+':true:false → 0':s:+':true:false
+' :: 0':s:+':true:false → 0':s:+':true:false
if :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
true :: 0':s:+':true:false
false :: 0':s:+':true:false
odd :: 0':s:+':true:false → 0':s:+':true:false
half :: 0':s:+':true:false → 0':s:+':true:false
pow :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
f :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
hole_0':s:+':true:false1_0 :: 0':s:+':true:false
gen_0':s:+':true:false2_0 :: Nat → 0':s:+':true:false
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
-,
*',
odd,
half,
fThey will be analysed ascendingly in the following order:
*' < f
odd < f
half < f
(10) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
0') →
0'*'(
s(
y)) →
+'(
*'(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
yodd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
if(
true,
x,
y) →
trueif(
false,
x,
y) →
falsepow(
x,
y) →
f(
x,
y,
s(
0'))
f(
x,
0',
z) →
zf(
x,
s(
y),
z) →
if(
odd(
s(
y)),
f(
x,
y,
*'(
z)),
f(
*'(
x),
half(
s(
y)),
z))
Types:
- :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
0' :: 0':s:+':true:false
s :: 0':s:+':true:false → 0':s:+':true:false
*' :: 0':s:+':true:false → 0':s:+':true:false
+' :: 0':s:+':true:false → 0':s:+':true:false
if :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
true :: 0':s:+':true:false
false :: 0':s:+':true:false
odd :: 0':s:+':true:false → 0':s:+':true:false
half :: 0':s:+':true:false → 0':s:+':true:false
pow :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
f :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
hole_0':s:+':true:false1_0 :: 0':s:+':true:false
gen_0':s:+':true:false2_0 :: Nat → 0':s:+':true:false
Generator Equations:
gen_0':s:+':true:false2_0(0) ⇔ 0'
gen_0':s:+':true:false2_0(+(x, 1)) ⇔ s(gen_0':s:+':true:false2_0(x))
The following defined symbols remain to be analysed:
-, *', odd, half, f
They will be analysed ascendingly in the following order:
*' < f
odd < f
half < f
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s:+':true:false2_0(
n4_0),
gen_0':s:+':true:false2_0(
n4_0)) →
gen_0':s:+':true:false2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
-(gen_0':s:+':true:false2_0(0), gen_0':s:+':true:false2_0(0)) →RΩ(1)
gen_0':s:+':true:false2_0(0)
Induction Step:
-(gen_0':s:+':true:false2_0(+(n4_0, 1)), gen_0':s:+':true:false2_0(+(n4_0, 1))) →RΩ(1)
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) →IH
gen_0':s:+':true:false2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
0') →
0'*'(
s(
y)) →
+'(
*'(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
yodd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
if(
true,
x,
y) →
trueif(
false,
x,
y) →
falsepow(
x,
y) →
f(
x,
y,
s(
0'))
f(
x,
0',
z) →
zf(
x,
s(
y),
z) →
if(
odd(
s(
y)),
f(
x,
y,
*'(
z)),
f(
*'(
x),
half(
s(
y)),
z))
Types:
- :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
0' :: 0':s:+':true:false
s :: 0':s:+':true:false → 0':s:+':true:false
*' :: 0':s:+':true:false → 0':s:+':true:false
+' :: 0':s:+':true:false → 0':s:+':true:false
if :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
true :: 0':s:+':true:false
false :: 0':s:+':true:false
odd :: 0':s:+':true:false → 0':s:+':true:false
half :: 0':s:+':true:false → 0':s:+':true:false
pow :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
f :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
hole_0':s:+':true:false1_0 :: 0':s:+':true:false
gen_0':s:+':true:false2_0 :: Nat → 0':s:+':true:false
Lemmas:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:+':true:false2_0(0) ⇔ 0'
gen_0':s:+':true:false2_0(+(x, 1)) ⇔ s(gen_0':s:+':true:false2_0(x))
The following defined symbols remain to be analysed:
*', odd, half, f
They will be analysed ascendingly in the following order:
*' < f
odd < f
half < f
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_0':s:+':true:false2_0(
+(
1,
n316_0))) →
*3_0, rt ∈ Ω(n316
0)
Induction Base:
*'(gen_0':s:+':true:false2_0(+(1, 0)))
Induction Step:
*'(gen_0':s:+':true:false2_0(+(1, +(n316_0, 1)))) →RΩ(1)
+'(*'(gen_0':s:+':true:false2_0(+(1, n316_0)))) →IH
+'(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
0') →
0'*'(
s(
y)) →
+'(
*'(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
yodd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
if(
true,
x,
y) →
trueif(
false,
x,
y) →
falsepow(
x,
y) →
f(
x,
y,
s(
0'))
f(
x,
0',
z) →
zf(
x,
s(
y),
z) →
if(
odd(
s(
y)),
f(
x,
y,
*'(
z)),
f(
*'(
x),
half(
s(
y)),
z))
Types:
- :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
0' :: 0':s:+':true:false
s :: 0':s:+':true:false → 0':s:+':true:false
*' :: 0':s:+':true:false → 0':s:+':true:false
+' :: 0':s:+':true:false → 0':s:+':true:false
if :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
true :: 0':s:+':true:false
false :: 0':s:+':true:false
odd :: 0':s:+':true:false → 0':s:+':true:false
half :: 0':s:+':true:false → 0':s:+':true:false
pow :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
f :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
hole_0':s:+':true:false1_0 :: 0':s:+':true:false
gen_0':s:+':true:false2_0 :: Nat → 0':s:+':true:false
Lemmas:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
*'(gen_0':s:+':true:false2_0(+(1, n316_0))) → *3_0, rt ∈ Ω(n3160)
Generator Equations:
gen_0':s:+':true:false2_0(0) ⇔ 0'
gen_0':s:+':true:false2_0(+(x, 1)) ⇔ s(gen_0':s:+':true:false2_0(x))
The following defined symbols remain to be analysed:
odd, half, f
They will be analysed ascendingly in the following order:
odd < f
half < f
(17) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
odd(
gen_0':s:+':true:false2_0(
*(
2,
n1173_0))) →
false, rt ∈ Ω(1 + n1173
0)
Induction Base:
odd(gen_0':s:+':true:false2_0(*(2, 0))) →RΩ(1)
false
Induction Step:
odd(gen_0':s:+':true:false2_0(*(2, +(n1173_0, 1)))) →RΩ(1)
odd(gen_0':s:+':true:false2_0(*(2, n1173_0))) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(18) Complex Obligation (BEST)
(19) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
0') →
0'*'(
s(
y)) →
+'(
*'(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
yodd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
if(
true,
x,
y) →
trueif(
false,
x,
y) →
falsepow(
x,
y) →
f(
x,
y,
s(
0'))
f(
x,
0',
z) →
zf(
x,
s(
y),
z) →
if(
odd(
s(
y)),
f(
x,
y,
*'(
z)),
f(
*'(
x),
half(
s(
y)),
z))
Types:
- :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
0' :: 0':s:+':true:false
s :: 0':s:+':true:false → 0':s:+':true:false
*' :: 0':s:+':true:false → 0':s:+':true:false
+' :: 0':s:+':true:false → 0':s:+':true:false
if :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
true :: 0':s:+':true:false
false :: 0':s:+':true:false
odd :: 0':s:+':true:false → 0':s:+':true:false
half :: 0':s:+':true:false → 0':s:+':true:false
pow :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
f :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
hole_0':s:+':true:false1_0 :: 0':s:+':true:false
gen_0':s:+':true:false2_0 :: Nat → 0':s:+':true:false
Lemmas:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
*'(gen_0':s:+':true:false2_0(+(1, n316_0))) → *3_0, rt ∈ Ω(n3160)
odd(gen_0':s:+':true:false2_0(*(2, n1173_0))) → false, rt ∈ Ω(1 + n11730)
Generator Equations:
gen_0':s:+':true:false2_0(0) ⇔ 0'
gen_0':s:+':true:false2_0(+(x, 1)) ⇔ s(gen_0':s:+':true:false2_0(x))
The following defined symbols remain to be analysed:
half, f
They will be analysed ascendingly in the following order:
half < f
(20) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
half(
gen_0':s:+':true:false2_0(
*(
2,
n1375_0))) →
gen_0':s:+':true:false2_0(
n1375_0), rt ∈ Ω(1 + n1375
0)
Induction Base:
half(gen_0':s:+':true:false2_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
half(gen_0':s:+':true:false2_0(*(2, +(n1375_0, 1)))) →RΩ(1)
s(half(gen_0':s:+':true:false2_0(*(2, n1375_0)))) →IH
s(gen_0':s:+':true:false2_0(c1376_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(21) Complex Obligation (BEST)
(22) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
0') →
0'*'(
s(
y)) →
+'(
*'(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
yodd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
if(
true,
x,
y) →
trueif(
false,
x,
y) →
falsepow(
x,
y) →
f(
x,
y,
s(
0'))
f(
x,
0',
z) →
zf(
x,
s(
y),
z) →
if(
odd(
s(
y)),
f(
x,
y,
*'(
z)),
f(
*'(
x),
half(
s(
y)),
z))
Types:
- :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
0' :: 0':s:+':true:false
s :: 0':s:+':true:false → 0':s:+':true:false
*' :: 0':s:+':true:false → 0':s:+':true:false
+' :: 0':s:+':true:false → 0':s:+':true:false
if :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
true :: 0':s:+':true:false
false :: 0':s:+':true:false
odd :: 0':s:+':true:false → 0':s:+':true:false
half :: 0':s:+':true:false → 0':s:+':true:false
pow :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
f :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
hole_0':s:+':true:false1_0 :: 0':s:+':true:false
gen_0':s:+':true:false2_0 :: Nat → 0':s:+':true:false
Lemmas:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
*'(gen_0':s:+':true:false2_0(+(1, n316_0))) → *3_0, rt ∈ Ω(n3160)
odd(gen_0':s:+':true:false2_0(*(2, n1173_0))) → false, rt ∈ Ω(1 + n11730)
half(gen_0':s:+':true:false2_0(*(2, n1375_0))) → gen_0':s:+':true:false2_0(n1375_0), rt ∈ Ω(1 + n13750)
Generator Equations:
gen_0':s:+':true:false2_0(0) ⇔ 0'
gen_0':s:+':true:false2_0(+(x, 1)) ⇔ s(gen_0':s:+':true:false2_0(x))
The following defined symbols remain to be analysed:
f
(23) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(24) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
0') →
0'*'(
s(
y)) →
+'(
*'(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
yodd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
if(
true,
x,
y) →
trueif(
false,
x,
y) →
falsepow(
x,
y) →
f(
x,
y,
s(
0'))
f(
x,
0',
z) →
zf(
x,
s(
y),
z) →
if(
odd(
s(
y)),
f(
x,
y,
*'(
z)),
f(
*'(
x),
half(
s(
y)),
z))
Types:
- :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
0' :: 0':s:+':true:false
s :: 0':s:+':true:false → 0':s:+':true:false
*' :: 0':s:+':true:false → 0':s:+':true:false
+' :: 0':s:+':true:false → 0':s:+':true:false
if :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
true :: 0':s:+':true:false
false :: 0':s:+':true:false
odd :: 0':s:+':true:false → 0':s:+':true:false
half :: 0':s:+':true:false → 0':s:+':true:false
pow :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
f :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
hole_0':s:+':true:false1_0 :: 0':s:+':true:false
gen_0':s:+':true:false2_0 :: Nat → 0':s:+':true:false
Lemmas:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
*'(gen_0':s:+':true:false2_0(+(1, n316_0))) → *3_0, rt ∈ Ω(n3160)
odd(gen_0':s:+':true:false2_0(*(2, n1173_0))) → false, rt ∈ Ω(1 + n11730)
half(gen_0':s:+':true:false2_0(*(2, n1375_0))) → gen_0':s:+':true:false2_0(n1375_0), rt ∈ Ω(1 + n13750)
Generator Equations:
gen_0':s:+':true:false2_0(0) ⇔ 0'
gen_0':s:+':true:false2_0(+(x, 1)) ⇔ s(gen_0':s:+':true:false2_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
(26) BOUNDS(n^1, INF)
(27) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
0') →
0'*'(
s(
y)) →
+'(
*'(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
yodd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
if(
true,
x,
y) →
trueif(
false,
x,
y) →
falsepow(
x,
y) →
f(
x,
y,
s(
0'))
f(
x,
0',
z) →
zf(
x,
s(
y),
z) →
if(
odd(
s(
y)),
f(
x,
y,
*'(
z)),
f(
*'(
x),
half(
s(
y)),
z))
Types:
- :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
0' :: 0':s:+':true:false
s :: 0':s:+':true:false → 0':s:+':true:false
*' :: 0':s:+':true:false → 0':s:+':true:false
+' :: 0':s:+':true:false → 0':s:+':true:false
if :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
true :: 0':s:+':true:false
false :: 0':s:+':true:false
odd :: 0':s:+':true:false → 0':s:+':true:false
half :: 0':s:+':true:false → 0':s:+':true:false
pow :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
f :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
hole_0':s:+':true:false1_0 :: 0':s:+':true:false
gen_0':s:+':true:false2_0 :: Nat → 0':s:+':true:false
Lemmas:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
*'(gen_0':s:+':true:false2_0(+(1, n316_0))) → *3_0, rt ∈ Ω(n3160)
odd(gen_0':s:+':true:false2_0(*(2, n1173_0))) → false, rt ∈ Ω(1 + n11730)
half(gen_0':s:+':true:false2_0(*(2, n1375_0))) → gen_0':s:+':true:false2_0(n1375_0), rt ∈ Ω(1 + n13750)
Generator Equations:
gen_0':s:+':true:false2_0(0) ⇔ 0'
gen_0':s:+':true:false2_0(+(x, 1)) ⇔ s(gen_0':s:+':true:false2_0(x))
No more defined symbols left to analyse.
(28) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
(29) BOUNDS(n^1, INF)
(30) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
0') →
0'*'(
s(
y)) →
+'(
*'(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
yodd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
if(
true,
x,
y) →
trueif(
false,
x,
y) →
falsepow(
x,
y) →
f(
x,
y,
s(
0'))
f(
x,
0',
z) →
zf(
x,
s(
y),
z) →
if(
odd(
s(
y)),
f(
x,
y,
*'(
z)),
f(
*'(
x),
half(
s(
y)),
z))
Types:
- :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
0' :: 0':s:+':true:false
s :: 0':s:+':true:false → 0':s:+':true:false
*' :: 0':s:+':true:false → 0':s:+':true:false
+' :: 0':s:+':true:false → 0':s:+':true:false
if :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
true :: 0':s:+':true:false
false :: 0':s:+':true:false
odd :: 0':s:+':true:false → 0':s:+':true:false
half :: 0':s:+':true:false → 0':s:+':true:false
pow :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
f :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
hole_0':s:+':true:false1_0 :: 0':s:+':true:false
gen_0':s:+':true:false2_0 :: Nat → 0':s:+':true:false
Lemmas:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
*'(gen_0':s:+':true:false2_0(+(1, n316_0))) → *3_0, rt ∈ Ω(n3160)
odd(gen_0':s:+':true:false2_0(*(2, n1173_0))) → false, rt ∈ Ω(1 + n11730)
Generator Equations:
gen_0':s:+':true:false2_0(0) ⇔ 0'
gen_0':s:+':true:false2_0(+(x, 1)) ⇔ s(gen_0':s:+':true:false2_0(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
(32) BOUNDS(n^1, INF)
(33) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
0') →
0'*'(
s(
y)) →
+'(
*'(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
yodd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
if(
true,
x,
y) →
trueif(
false,
x,
y) →
falsepow(
x,
y) →
f(
x,
y,
s(
0'))
f(
x,
0',
z) →
zf(
x,
s(
y),
z) →
if(
odd(
s(
y)),
f(
x,
y,
*'(
z)),
f(
*'(
x),
half(
s(
y)),
z))
Types:
- :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
0' :: 0':s:+':true:false
s :: 0':s:+':true:false → 0':s:+':true:false
*' :: 0':s:+':true:false → 0':s:+':true:false
+' :: 0':s:+':true:false → 0':s:+':true:false
if :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
true :: 0':s:+':true:false
false :: 0':s:+':true:false
odd :: 0':s:+':true:false → 0':s:+':true:false
half :: 0':s:+':true:false → 0':s:+':true:false
pow :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
f :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
hole_0':s:+':true:false1_0 :: 0':s:+':true:false
gen_0':s:+':true:false2_0 :: Nat → 0':s:+':true:false
Lemmas:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
*'(gen_0':s:+':true:false2_0(+(1, n316_0))) → *3_0, rt ∈ Ω(n3160)
Generator Equations:
gen_0':s:+':true:false2_0(0) ⇔ 0'
gen_0':s:+':true:false2_0(+(x, 1)) ⇔ s(gen_0':s:+':true:false2_0(x))
No more defined symbols left to analyse.
(34) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
(35) BOUNDS(n^1, INF)
(36) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
0') →
0'*'(
s(
y)) →
+'(
*'(
y))
if(
true,
x,
y) →
xif(
false,
x,
y) →
yodd(
0') →
falseodd(
s(
0')) →
trueodd(
s(
s(
x))) →
odd(
x)
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
if(
true,
x,
y) →
trueif(
false,
x,
y) →
falsepow(
x,
y) →
f(
x,
y,
s(
0'))
f(
x,
0',
z) →
zf(
x,
s(
y),
z) →
if(
odd(
s(
y)),
f(
x,
y,
*'(
z)),
f(
*'(
x),
half(
s(
y)),
z))
Types:
- :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
0' :: 0':s:+':true:false
s :: 0':s:+':true:false → 0':s:+':true:false
*' :: 0':s:+':true:false → 0':s:+':true:false
+' :: 0':s:+':true:false → 0':s:+':true:false
if :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
true :: 0':s:+':true:false
false :: 0':s:+':true:false
odd :: 0':s:+':true:false → 0':s:+':true:false
half :: 0':s:+':true:false → 0':s:+':true:false
pow :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
f :: 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false → 0':s:+':true:false
hole_0':s:+':true:false1_0 :: 0':s:+':true:false
gen_0':s:+':true:false2_0 :: Nat → 0':s:+':true:false
Lemmas:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:+':true:false2_0(0) ⇔ 0'
gen_0':s:+':true:false2_0(+(x, 1)) ⇔ s(gen_0':s:+':true:false2_0(x))
No more defined symbols left to analyse.
(37) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s:+':true:false2_0(n4_0), gen_0':s:+':true:false2_0(n4_0)) → gen_0':s:+':true:false2_0(0), rt ∈ Ω(1 + n40)
(38) BOUNDS(n^1, INF)